

Laser-Based Directed Energy Weapons: Technological Capabilities, Material Interaction, and Strategic Deployment Pathways

Aswin Karkadakattil^{1,A-F}

[ORCID !\[\]\(17413706fd4997a1a4bdf85c6864eee1_img.jpg\) 0009-0004-6141-0545](https://orcid.org/0009-0004-6141-0545)

A - Research concept and design, B - Collection and/or assembly of data, C - Data analysis and interpretation, D - Writing the article, E - Critical revision of the article, F - Final approval of the article

Original article

Received: 2025-12-09

Revised: 2026-01-12

Accepted: 2026-01-12

Final review: 2026-01-12

Peer review: 2026-01-07

Double blind

¹ Independent Researcher, India.

Abstract

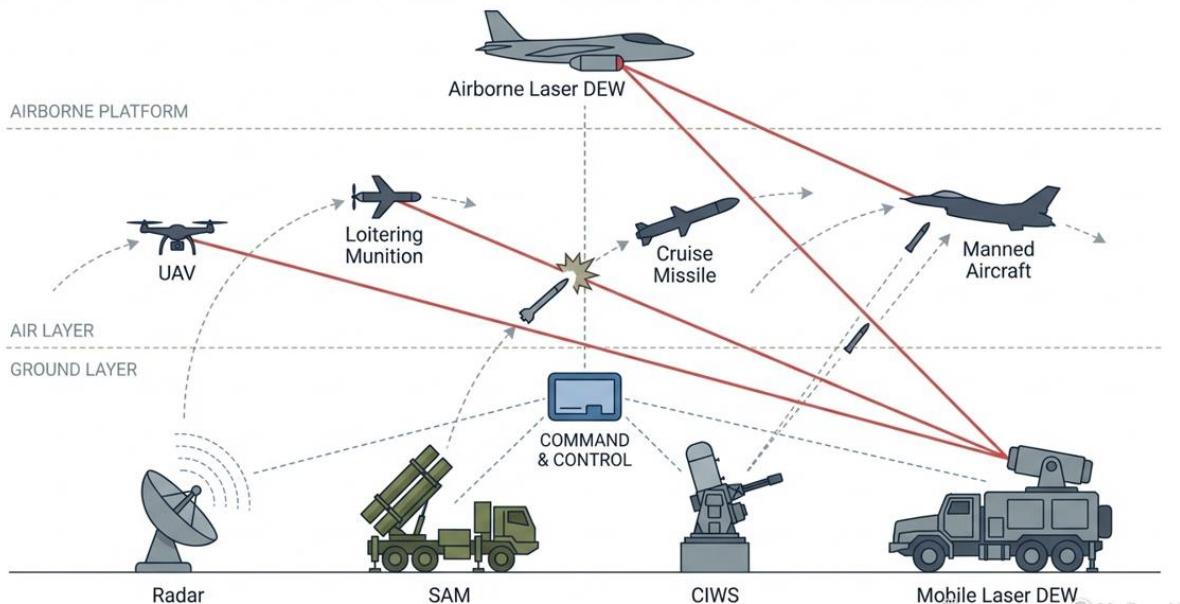
Objectives: This review aims to evaluate the current capabilities of laser-based Directed Energy Weapons (DEWs), assess their interaction with aerospace and defence-relevant materials, analyse atmospheric propagation constraints, and identify technological barriers and future strategic pathways for deployment across land, air, and naval platforms.

Results: Solid-state, fibre, and chemical lasers exhibit varying power levels, efficiencies, and platform suitability, with fibre lasers demonstrating the highest readiness for operational deployment. Material response analysis highlights distinct ablation thresholds, deformation behaviours, and surface degradation patterns for aerospace alloys and composites. Atmospheric propagation remains a primary performance constraint, while mitigation using adaptive optics, beam shaping, and wavelength optimization shows measurable improvement. System-level challenges persist regarding power generation, thermal management, and AI-supported beam control for mobile platforms.

Conclusions: Laser-based DEWs are transitioning from prototype demonstrations to practical use, yet achieving deployment-ready solutions requires further advances in laser–material coupling models, scalable power architectures, and battlefield-integrated sensor fusion. Future opportunities include AI-driven beam control, compact energy storage, and pathways toward space-based laser platforms. Coordinated progress in materials engineering, power electronics, and autonomous targeting is essential for maturing DEWs into reliable and strategically transformative weapon systems.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License

Corresponding author: Aswin Karkadakatil holds an M.Tech from the Indian Institute of Technology (IIT) and a B.Tech from the Government College of Engineering, Kannur. He is an independent researcher based in India, with research experience in laser–material interaction, manufacturing science, and aerospace engineering applications. Email: ashwinharik20000@gmail.com


Abbreviation Full Form

ADITYA	Advanced Directed Infrared Technology for Aerospace
AO	Adaptive Optics
ANN	Artificial Neural Network
CFRP	Carbon Fiber Reinforced Polymer
CHESS	Centre for High Energy Systems and Sciences
CIWS	Close-In Weapon System
CW	Continuous Wave
DEW	Directed Energy Weapon
DRDO	Defence Research and Development Organisation
FEL	Free Electron Laser
HAZ	Heat-Affected Zone
HELIOS	High-Energy Laser and Integrated Optical-dazzler with Surveillance
IDRW	Indian Defence Research Wing
LaWS	Laser Weapon System
LOAC	Law of Armed Conflict
R&D	Research and Development
SAM	Surface-to-Air Missile
SHORAD	Short-Range Air defence
SSL	Solid-State Laser
TRL	Technology Readiness Level
UAV	Unmanned Aerial Vehicle

1. Introduction

Modern conflict environments are increasingly shaped by asymmetric, low-cost aerial threats such as drone swarms, loitering munitions, and rapidly manoeuvring hypersonic vehicles. These emerging systems have exposed the practical limits of conventional kinetic air-defence, where every interception carries a high financial cost, a finite magazine, and delayed reaction time under saturation attacks (Adams & Schallhorn 2016). In contrast, laser-based Directed Energy Weapons (DEWs) are gaining prominence as a transformative solution because they deliver energy at the speed of light, offer scalable destructive and non-destructive effects, and significantly reduce cost-per-engagement (Phipps 2007; Adams & Schallhorn 2016). Their ability to disable or destroy threats without physical ammunition provides a compelling operational advantage, particularly against fast, unpredictable, or swarm-based threats. Recent demonstrations reflect this momentum across multiple countries. The U.S. Navy's LaWS showcased shipborne laser engagement against UAVs and small vessels (US Navy Office of Naval Research 2017), while Israel's Iron Beam entered advanced testing to counter short-range rockets and low-flying threats as part of its layered defence structure (Rafael Advanced Defense Systems 2023). Parallel advances are reported in the United States and China on mobile and airborne laser weapon concepts (Lockheed Martin, 2022; NATO Science and Technology Organization, 2019). India has also accelerated indigenous developments through DRDO programmes, particularly ADITYA and CHESS, aimed at counter-UAV and short-range laser-based intercept capabilities (Indian Defence Research Wing 2024; High Energy Laser Joint Technology Office 2020). Despite these advancements,

current research remains fragmented, with many publications addressing isolated components such as laser physics, atmospheric optics, or individual nation-level programmes. There is a lack of consolidated, multidisciplinary analysis that connects technology readiness, material effects under laser exposure, atmospheric propagation constraints, and integration challenges within layered defence architectures. Moreover, AI-driven beam control, compact power sources, and feasibility of space-based deployment are emerging topics that require unified treatment rather than single-domain discussion (Hanák et al. 2024). This review responds to these gaps by examining laser weapon technologies, material interaction mechanisms, propagation challenges, integration in tactical air-defence systems, and future strategic pathways. By synthesizing engineering, materials science, and operational perspectives, the paper aims to support a clearer understanding of the opportunities, limitations, and research directions shaping the future of laser-directed energy warfare. Fig. 1 depicts the integration of high-energy lasers into a layered air defence system. Radar units provide early detection and tracking of UAVs, loitering munitions, and cruise missiles. Missile batteries and CIWS form the kinetic layers, while laser DEWs engage low-altitude, fast-moving targets with near-instant response. The arrangement underscores the complementary role of lasers in short- to medium-range defence, enhancing flexibility and reducing engagement costs. As illustrated in Fig. 1, laser-based directed energy weapons are integrated within a layered air-defence architecture alongside kinetic interceptors and sensor networks.

Fig. 1. Multi-layered air-defence architecture integrating laser-based directed energy weapons (DEWs) alongside kinetic interceptors and sensor networks.

Source: Author's own conceptual classification.

Fig. 1 illustrates the complementary role of naval, land, and airborne laser systems in countering diverse aerial threats including UAVs, loitering munitions, cruise missiles, and manned aircraft through rapid, precision, and cost-efficient engagement within a layered command-and-control framework.

1.1 Literature Review and Novelty Justification

Research on Directed Energy Weapons (DEWs) has expanded significantly over the past two decades, progressing from laboratory-scale demonstrations to early-stage operational deployment. Early foundational texts such as Phipps (2007) established the physics of laser ablation and the conditions that govern material removal, while Adams and Schallhorn (2016) outlined the first broad overview of DEW concepts, system components, and emerging military applications. These works are historically important but were published before recent shifts in combat requirements, particularly the rise of low-cost UAV swarms and the demand for mobile high-energy platforms. Strategic and governmental assessments from HEL-JTO (2020), NATO STO (2019; 2020) and the US National Academies (2008) examined the military relevance and potential advantages of DEWs. However, these studies largely focused on feasibility and strategic posturing and did not attempt to compare performance across different laser technologies or operational environments. Manufacturer briefs, including those from Lockheed Martin (2022) and Rafael (2023), provide updated performance claims but remain platform-specific and commercially selective. A substantial body of literature addresses atmospheric propagation and its challenges (e.g., Andrews and Phillips, 2005; Weichel, 1990; Roth and Monjardet, 2018; Liu, Chen and Xu, 2022). More recent work has shifted from theoretical degradation models toward practical compensation techniques, including adaptive optics and predictive control (Nguyen, Park and Kim, 2023; Lin, Chen and Wu, 2023). Yet, these studies typically examine propagation in isolation and do not incorporate how material behaviour, beam shaping, energy storage or targeting doctrine interact in real operational settings.

Research into material survivability and coatings has gained relevance with the adoption of composites and additive manufacturing in defence structures (Zhang et al., 2025; Voynov et al., 2021). Power requirements and thermal limits for intercepting missiles and drones have also been quantified (Benford, Benford and Satori, 2021), while solutions for energy storage and platform cooling continue to evolve (Fedorov, Zhang and Wang, 2024; Amini, Zhao and Karimi, 2024). However, these contributions remain scattered across materials science, thermal engineering, and defence operations leaving decision-makers without a consolidated engineering-to-tactics perspective. The rapid rise of AI-enabled targeting, wavefront correction and autonomous decision-making now represents a major frontier area in DEW development (Patel and Srinivasan, 2024; Wang, Chen and Luo, 2022; Nickel et al., 2015; Wilcke et al., 2017). While these works demonstrate promise, they are not yet incorporated into most published DEW reviews, and their implications for real-world deployment are still evolving. Studies that discuss tactical integration and layered air defence (e.g., Farlik and Tesar, 2018; Roux and Van Vuuren, 2007; Kline, Ahner and Lunday, 2019; Chen et al., 2020; Ho et al., 2022) highlight gap: traditional modelling frameworks treat weapons as interchangeable interceptors, without accounting for unique DEW factors such as dwell time, coherence losses, or cost-per-engagement dynamics. As a result, the literature provides insights into resource allocation but does not present a unified view of how DEWs reshape tactical doctrine. Finally, while market forecasts and defence briefings (GAO, 2023; Precedence Research, 2024; Army-Technology, 2025) confirm increasing investment, there is limited scholarly analysis comparing national strategies or technology maturity. The emerging discussion around space-

based DEW systems (Baccarelli et al., 2023) suggests a future where laser defence becomes part of orbital deterrence, yet no consolidated framework links current terrestrial capabilities to these longer-term ambitions.

This review advances the state of existing literature in four ways:

- It connects physics, atmospheric effects, and tactical integration Instead of treating ablation, propagation, and platform constraints independently, this review presents a combined model of how laser energy translates to operational outcomes under real-world environmental variables.
- It offers a cross-national capability and roadmap comparison. Most previous literature focuses on single-nation programs. This review compares approaches across the US, Israel, NATO initiatives, China, and India — capturing both divergence and convergence in strategy.
- It incorporates the newest developments in AI, autonomy, and beam control These areas have emerged only in the last few years and are largely absent from earlier reviews.
- It positions DEWs within modern layered air defense systems, not as standalone weapons.

2. Types of Laser-Based Directed Energy Weapons

Laser-based Directed Energy Weapons (DEWs) are distinguished by how they generate laser energy, the characteristics of their gain medium, and the platform on which they are deployed. Each technology offers different strengths in beam quality, efficiency, and suitability for specific mission profiles. The four principal approaches solid-state, chemical, fibre, and free-electron lasers represent the core of global DEW development and are summarized below together with their land, sea, and air-based applications.

2.1 Solid-State Lasers (SSL)

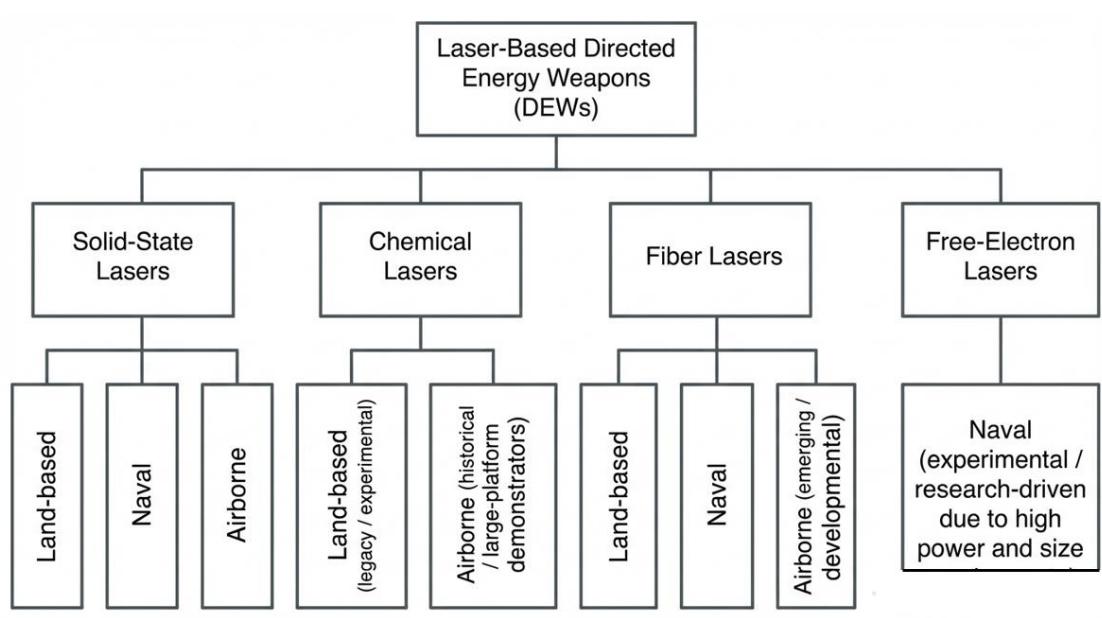
Solid-state lasers use crystal or glass materials such as Nd:YAG as their gain medium and typically produce near-infrared beams around $1.06\text{ }\mu\text{m}$. They are valued for their compact size, reliability, and relative simplicity, making them well suited for mobile defence systems. Diode pumping has further improved stability and efficiency, though managing heat under sustained high-power operation remains a challenge. SSL technology forms the foundation for several counter-drone and counter-munition prototypes, including the U.S. Army's HELMTT system.

2.2 Chemical Lasers

Chemical lasers achieve very high power levels through energy released by reactive chemical processes, such as HF or DF reactions, enabling outputs in the megawatt range. This capability has been demonstrated in programs such as the YAL-1 Airborne Laser. However, reliance on hazardous fuels, large storage tanks, and complex handling procedures has reduced interest in chemical lasers for future platforms, with most current efforts pivoting toward electrically powered solutions.

2.3 Fibre Lasers

Fibre lasers use rare-earth doped optical fibres, typically ytterbium or erbium, to generate beams in the 1.0–1.1 μm range. They offer higher efficiency (35–45%), excellent beam quality, and scalability through coherent beam combining a feature that has enabled significant power growth over the past decade. Fibre lasers have become central to modern DEW programs such as the U.S. Navy's HELIOS and the DE M-SHORAD vehicle-mounted system, demonstrating consistent performance against UAVs, rockets, and small projectiles. The maturity of multi-core and phase-controlled fibres has pushed operational outputs beyond the 300 kW class, reinforcing fibre lasers as the leading candidates for near-term deployment.


2.4 Free-Electron Lasers (FEL)

Free-electron lasers generate tunable radiation from infrared to X-ray wavelengths using a high-energy electron beam instead of a traditional gain medium. This removes many thermal and material constraints, offering theoretical pathways to extremely high power and wavelength tuning for specific atmospheric windows. Despite their potential, FELs remain largely experimental due to the size and complexity of particle accelerators and cryogenic systems required. Current technology readiness suggests continued research rather than operational deployment.

2.5 Delivery Platforms

Beyond laser generation technologies, the operational effectiveness of Directed Energy Weapons is strongly influenced by the platforms on which they are deployed:

- Land-Based Systems: Tactical and short-range defence missions including counter-UAV and low-altitude protection benefit from vehicle-mounted architectures such as the HELMTT (United States) and ADITYA (India). Israel's Iron Beam further demonstrates ground-based fibre laser interception as a complement to missile systems.
- Naval Systems: Ships are ideal DEW platforms due to their available power generation and cooling capacity. Systems such as LaWS and HELIOS demonstrate shipborne neutralisation of UAVs and fast-attack craft with integrated electro-optical tracking and ISR features.
- Airborne Systems: Airborne lasers offer advantages in early-stage interception and extended line-of-sight. The YAL-1 COIL program represented a major milestone in boost-phase missile defence, while ongoing projects are pursuing compact 50–100 kW pod-mounted lasers for fighter jets and large UAVs. Fibre lasers currently show the most favourable scalability for mobile platforms (see Fig. 2).

Fig. 2. Hierarchical classification of laser-based Directed Energy Weapons (DEWs) according to generation mechanism, gain medium, and platform-level deployment.

Source: Author's own conceptual classification.

The schematic differentiates solid-state, chemical, fibre, and free-electron laser technologies and maps their suitability to land, naval, and airborne systems based on power requirements, system compactness, thermal management needs, and logistical constraints. Solid-state and fibre lasers demonstrate the broadest applicability across all platforms, whereas chemical and free-electron lasers remain limited by hazardous reactants or system complexity, confining them primarily to experimental or specialized naval and airborne roles. The classification highlights the technological and operational trade-offs that shape strategic adoption pathways for DEW architectures. Table 1 compares the four main laser technologies for directed energy weapons, detailing wavelength, power, efficiency, applications, and key pros and cons. Solid-state and fibre lasers stand out for their versatility and efficiency across land, naval, and airborne platforms. Chemical lasers deliver megawatt-class power but face safety and logistical drawbacks, while Free Electron Lasers offer tunability and scalability yet remain experimental due to size and complexity. The table provides a baseline for evaluating system suitability in varied defence scenarios.

Table 1. Comparative performance characteristics of major laser weapon types, categorized by wavelength, output power, energy efficiency, operational advantages, and key limitations.

Laser Type	Wavelength (μm)	Power Output	Efficiency (%)	Current/Notable Use	Advantages	Limitations
Solid-State Lasers (SSL)	~1.06 (Nd:YAG), 1.03 (Yb: YAG)	10s to 300+ kW	20–30%	HELMTT (US Army), ADITYA (DRDO), Rheinmetall 20kW+	Compact, modular; solid gain medium; scalable	Heat accumulation; limited continuous output
Chemical Lasers	2.7–3.8 (HF/DF), 1.315 (COIL)	Up to 1 MW	~10–15%	YAL-1 ABL (Boeing 747 COIL – retired), MIRACL	High peak power; long-range engagement potential	Toxic fuels, bulky, logistical & handling hazards
Fiber Lasers	1.03–1.08 (Yb-doped)	50 to 300+ kW (scalable via beam combining)	35–45%	HELIOS (US Navy), DE M-SHORAD (US Army), Lockheed ATHENA	High beam quality; high efficiency; compact footprint	Thermal saturation; limited to CW modes at scale
Free Electron Laser (FEL)	Broad tunability: UV–IR–X-ray	Potentially MW-class (experimental)	N/A (electrical + particle beam)	U.S. Navy R&D (ONR, FEL-N)	Tunable wavelength; potentially unlimited power; no traditional gain medium	Very large system size; complex cryogenics; not yet fieldable

Source :Author's compilation based on published literature.

The summary highlights the contrasting power scalability, logistical demands, and platform suitability of solid-state, chemical, fibre, and free-electron lasers. Fibre and solid-state lasers demonstrate the most viable pathways for near-term deployment due to compact architectures and electrical operation, whereas chemical and free-electron lasers remain constrained by hazardous reactants, system complexity, and integration challenges for mobile defence platforms.

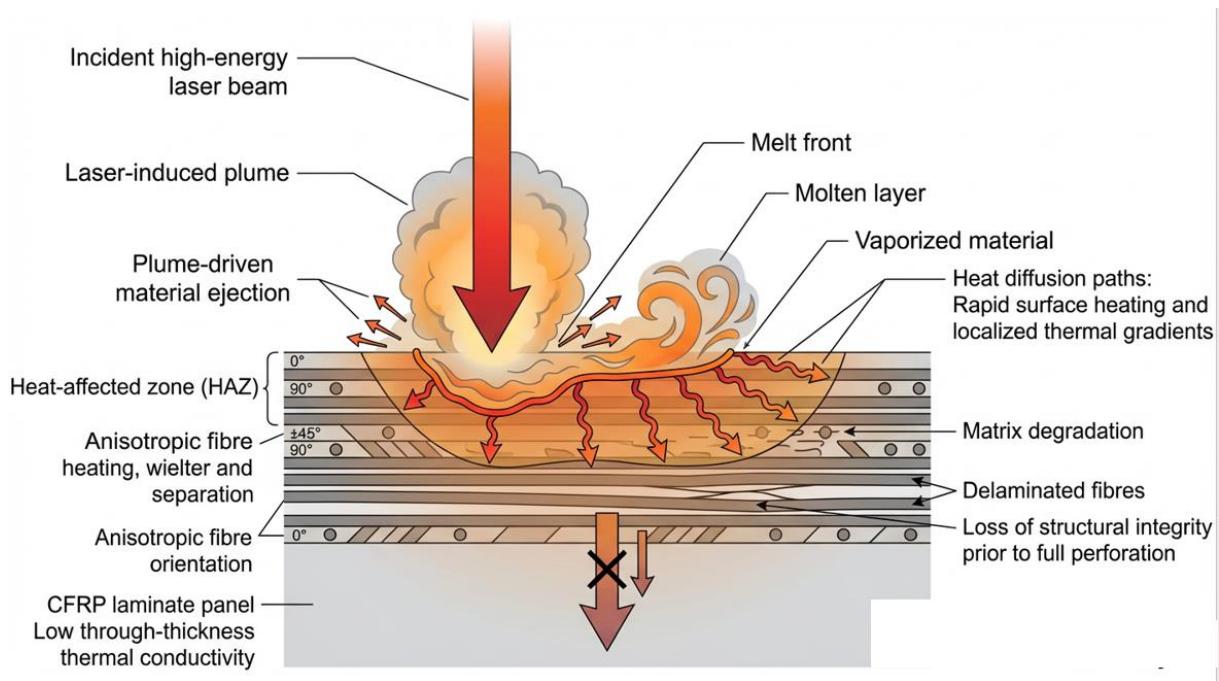
3. Laser–Material Interaction And Target Response

The effectiveness of laser-based Directed Energy Weapons (DEWs) is fundamentally determined by how high-energy beams interact with target materials. These interactions are governed by laser ablation physics, where incident energy induces rapid heating, phase transitions, and progressive structural degradation. A clear understanding of these mechanisms is critical for estimating time-to-kill (TTK), selecting optimal engagement parameters, and evaluating material vulnerability across different classes of defence systems and aerospace structures.

3.1 Laser Ablation Physics

When a focused laser beam impacts a surface, absorbed photon energy is rapidly converted into heat, initiating a sequence of thermophysical events:

1. Thermal Conduction: Heat diffuses into the surrounding material within microns of the surface, influenced by thermal diffusivity, beam intensity, and pulse duration.
2. Melting: Continued energy deposition raises surface temperature beyond the melting point, resulting in softening, reflow, or deformation of the structure.
3. Vaporization: Once vaporization thresholds are exceeded, material is ejected through vapor plumes or melt expulsion, accelerating mass loss.
4. Plasma Formation: At sufficiently high-power densities, vaporized material ionizes into plasma, which can either shield the target or destabilize ablation depending on beam parameters.


The dominant damage mechanism – whether melting, cracking, delamination, spallation, or explosive ablation – is determined by a combination of beam characteristics (wavelength, power density, exposure duration) and intrinsic material properties (thermal conductivity, reflectivity, absorptivity, and phase-transition thresholds).

3.2 Effects on Aircraft Skins and Structural Materials

Modern aircraft, UAVs, and munitions employ lightweight structural materials that exhibit varied thermal responses and failure modes under high-energy laser exposure:

- Aluminium Alloys (e.g., Al-2024, Al-7075): While initially reflective in the near-infrared spectrum ($\sim 1.06 \mu\text{m}$), absorption increases rapidly with surface heating and oxide formation. Once melting begins at approximately 660°C , high thermal conductivity promotes rapid heat spread, leading to softening and perforation within seconds under power densities exceeding 10 kW/cm^2 .
- Carbon-Fibre Reinforced Polymers (CFRP): CFRP exhibits high optical absorption but poor thermal conductivity. This leads to localized thermal runaway, matrix decomposition, fibre delamination, and surface spallation often resulting in structural failure more quickly than metallic alloys exposed to similar laser flux.
- Titanium Alloys: Titanium offers higher melting temperature ($\sim 1650^\circ\text{C}$) and lower thermal conductivity compared to aluminium, enabling greater resistance to short exposures. However, prolonged or high-intensity irradiation eventually induces localized melting, deformation, and conduction-driven failure.

These material-specific responses emphasize the importance of tailoring laser parameters and engagement strategies to the composition and geometry of the target. Composites and thin-walled structures are particularly vulnerable, whereas high-performance metallic alloys exhibit increased resilience but remain susceptible under sustained high-energy exposure. As shown in Fig. 3, anisotropic fibre orientation contributes to delamination and plume-induced ejection.

Fig. 3. Conceptual schematic of thermal ablation in carbon fibre reinforced polymer (CFRP) composites under high-energy laser irradiation.

Source: Author's own conceptual illustration based on published literature.

The model illustrates rapid surface heat absorption, melt-front evolution, matrix degradation, and fibre delamination within the heat-affected zone (HAZ). The inherent layered anisotropy and low through-thickness thermal conductivity of CFRP promote localized thermal runaway and plume-driven material ejection, leading to a progressive loss of structural integrity prior to complete perforation. This schematic highlights the role of material-specific ablation thresholds and failure mechanisms in assessing the vulnerability of aerospace composite structures subjected to directed-energy exposure.

3.3 Effects on Drones, Missiles, and Projectiles

Laser-based Directed Energy Weapons (DEWs) are particularly effective against aerial threats characterized by thin-walled structures, exposed sensors, and temperature-sensitive electronic subsystems. Such features reduce the energy and dwell time required to achieve functional disruption or structural degradation, even in the absence of complete material perforation:

- **Mini-UAVs and Commercial Drones:** Miniature UAVs and commercial drones are typically constructed from polymer-based materials, CFRP components, and thin aluminium skins, resulting in low thermal mass and limited heat dissipation capability. Continuous-wave laser systems in the 30–50 kW power range can induce material degradation or localized penetration within a few seconds at engagement ranges below approximately 1 km, provided adequate beam stabilization. In many cases, mission kill occurs prior to full skin perforation due to overheating of onboard electronics, wiring harnesses, battery packs, or electro-optical payloads, leading to loss of propulsion, guidance, or control.

- Mortars and Artillery Projectiles: Mortars and artillery shells present smaller target cross-sections and shorter engagement windows; however, laser irradiation can still induce functional disruption through rapid heating of fuzes, casings, or aerodynamic surfaces. Sustained dwell time is typically required to produce sufficient thermal gradients for casing deformation, fuze malfunction, or destabilization of the projectile's flight path, which may compromise tracking stability and terminal accuracy without necessarily initiating the explosive fill.
- Cruise Missiles: Although cruise missiles are generally more robustly constructed, many designs incorporate aluminium alloys or composite radomes and external control surfaces that remain vulnerable to laser-induced ablation. Effective engagement against high-speed and manoeuvring targets requires precise beam pointing, real-time stabilization, and predictive tracking algorithms to maintain sufficient dwell time on critical subsystems. Localized heating of guidance sensors, radomes, or control surfaces can lead to degraded navigation performance or loss of aerodynamic stability.

Representative material damage thresholds and estimated time-to-kill (TTK) values for commonly encountered aerospace materials are summarized in Table 2. These values are derived from controlled experimental studies or simulation-based analyses and should be interpreted as order-of-magnitude estimates. Actual operational performance will vary significantly with atmospheric attenuation, beam divergence, target motion, engagement geometry, and laser beam stabilization capability.

Table 2. Ablation thresholds and estimated time-to-kill (TTK) for representative aerospace materials under high-energy laser exposure.

Material	Thickness	Ablation Threshold (W/cm ² or J/cm ²)	Estimated Time to Kill (at 50–100 kW)	Dominant Failure Mode
Al 7075 Alloy	3 mm	~10–12 J/cm ² (CW); ~2,000–2,500 W/cm ²	3–7 sec	Melting, structural softening
CFRP (Epoxy Matrix)	2 mm	~5–7 J/cm ² ; ~1,500–1,800 W/cm ²	2–4 sec	Delamination, thermal spallation
ABS Plastic (Drone Skin)	1.5 mm	~2–4 J/cm ² ; ~1,000 W/cm ²	<2 sec	Charring, surface melting
Titanium Ti-6Al-4V	2 mm	~15–20 J/cm ² ; ~3,000–4,000 W/cm ²	6–10 sec	Surface melting, conduction-driven failure
Borosilicate Glass (Radome)	4 mm	~18 J/cm ² ; ~2,500–3,000 W/cm ²	5–8 sec	Cracking, explosive ablation

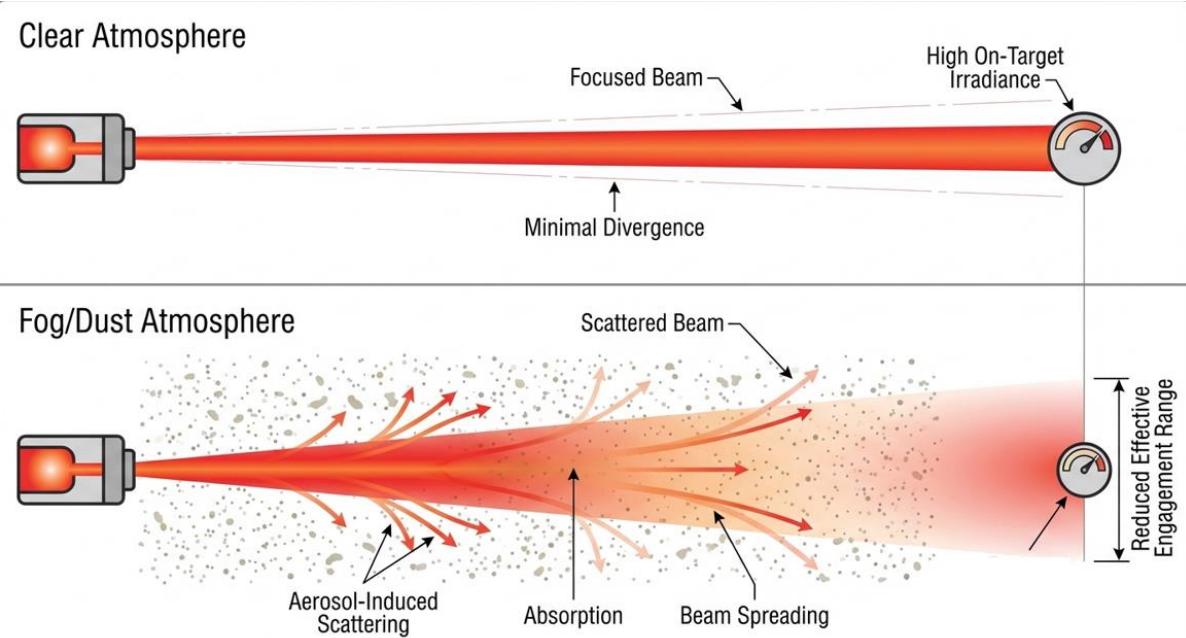
Note: Actual lethality outcomes depend on beam diameter, dwell duration, pointing precision, atmospheric loss, and target manoeuvrability. These figures should be interpreted as indicative ranges for design and modelling purposes rather than fixed operational performance.

Sources: Author's synthesis and order-of-magnitude estimates based on published experimental and simulation studies.

3.4 Atmospheric and Beam Parameter Considerations

Laser–material interaction is influenced not only by intrinsic thermal and optical properties of the target but also by environmental and beam-specific parameters. Humidity, airborne particulates, and precipitation reduce delivered energy through absorption and scattering, while beam spot size, coherence, jitter, and focal stability govern how effectively energy is deposited on target surfaces. Thermal blooming, produced by localized air heating along the beam path, can defocus or distort high-power continuous-wave lasers, necessitating compensation through adaptive optics or power modulation. Furthermore, rapidly moving or rotating targets require precise beam steering and predictive control to sustain effective dwell time. Lightweight and low-conductivity materials such as CFRP degrade more rapidly under thermal loading, whereas high-performance alloys exhibit delayed but eventual failure under sustained exposure. Accurate modelling of heat transfer, phase transitions, and plume dynamics remains essential for both weapon development and countermeasure planning.

4. Environmental Propagation And Countermeasures


The real-world performance of laser-based DEWs is strongly influenced by atmospheric propagation. Unlike kinetic projectiles, which travel independently of medium clarity, laser beams are affected by water vapor, dust, aerosols, and thermal gradients that alter the amount and distribution of energy arriving at the target.

4.1 Atmospheric Attenuation Mechanisms

Infrared laser systems (1.03–1.06 μm), typically employed in solid-state and fibre architectures, experience attenuation through multiple mechanisms:

- Aerosol and Dust Scattering: Smoke, dust, and pollution scatter laser energy (Mie scattering) depending on particle size and concentration.
- Fog and Rain Absorption: Water droplets significantly absorb and scatter energy; dense fog may reduce transmission by over 90%, while rain produces moderate yet disruptive loss.
- Thermal Blooming: Localized air heating changes the refractive index, causing beam defocus and reduced spot intensity.
- Turbulence and Beam Wander: Temperature gradients, wind shear, and battlefield effects induce phase distortion and pointing instability.

These factors reduce effective range and highlight the need for dynamic compensation strategies such as adaptive optics, wavelength optimization, and pulsed-beam operation. As illustrated in Fig. 4, aerosol scattering disrupts beam coherence even at moderate concentrations.

Fig. 4. Comparative depiction of laser beam propagation under clear and degraded atmospheric conditions.

Source: Author's own conceptual illustration.

In clear air, high-energy lasers maintain beam coherence and power density, enabling precise long-range engagement. In fog, smoke, or dust-laden environments, aerosol scattering and absorption disperse the beam, reducing on-target irradiance and effective lethality. Reported attenuation in dense fog and battlefield smoke can exceed 30 dB/km, significantly limiting engagement range unless mitigated through adaptive optics, wavelength selection, or beam-combining strategies.

4.2 Countermeasures and Beam Control Techniques

A range of countermeasures has been developed to sustain DEW effectiveness in challenging atmospheric environments where scattering, absorption, and turbulence degrade beam quality. Key approaches include:

- Adaptive Optics (AO): Real-time wavefront sensing combined with deformable mirror correction enables compensation for turbulence-induced distortion, enhancing focus and long-range energy delivery. Originally developed for astronomical imaging, AO is now being adapted for naval and land-based laser weapon systems.
- Beam Shaping and Combining: Coherent beam combining and phase locking merge multiple lower-power lasers into a single, high-quality beam, improving resilience against phase noise and atmospheric perturbation. This approach extends engagement range and reduces the impact of single-beam divergence.
- Wavelength Tuning: Different atmospheric conditions exhibit unique absorption and scattering profiles. Fibre-based lasers operating in the 1.03–1.08 μm band demonstrate improved propagation in fog and haze compared to mid-IR chemical

systems. Free-electron lasers offer future potential through real-time tunability to atmospheric transmission windows.

- Pulsed vs Continuous-Wave Operation: Pulsed laser operation produces intense, short bursts of energy that limit cumulative heating of air molecules and mitigate thermal blooming. This can be particularly advantageous against moving or rotating targets where continuous dwell is difficult to maintain.

The performance benefits of these countermeasures under representative field conditions are summarized in Table 3.

Table 3. Atmospheric attenuation levels and associated countermeasure effectiveness for representative battlefield conditions.

Environmental Condition	Typical Attenuation (dB/km)	Countermeasure Efficiency (AO / Beam Shaping)
Clear Air (Standard Atmosphere)	~0.1–0.3	>95% (beam maintains full effectiveness)
Light Rain	~1.0–3.0	80–90% (AO supplemented by pulse operation)
Heavy Rain	~5.0–10.0	60–75% (effective primarily at shorter ranges)
Moderate Fog	~10–20	40–60% (fibre lasers exhibit improved performance)
Dense Fog / Battlefield Smoke	>30	<30% (operational range typically <500 m)
Dust Storm / Desert Winds	~10–15	50–65% (CBC and shielding recommended)
High Turbulence (Desert/Urban Ops)	Phase distortion not measured in dB	70–85% (adaptive optics critical)

Note: Countermeasure efficiency values represent generalised estimates based on controlled testing and simulations; real-world performance may vary.

Sources: Author's synthesis and order-of-magnitude estimates based on published experimental and simulation studies.

Achieving sustained line-of-sight engagement remains a key operational challenge in complex environments. Urban structures, uneven terrain, and target manoeuvrability restrict beam accessibility. Turbulence from thermal gradients, explosions, or wind shear further degrade beam coherence, contributing to phenomena such as thermal blooming and beam wander. Consequently, modern DEW systems must incorporate high-speed beam control, environmental sensing, and predictive tracking to maintain lethality under non-ideal conditions.

4.3 Operational Implications

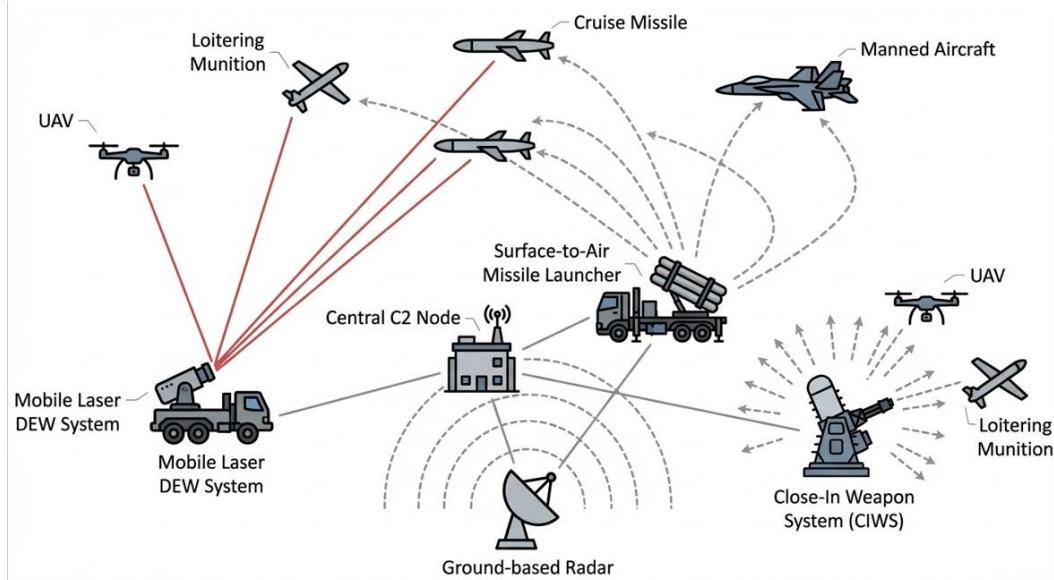
Atmospheric effects represent one of the most significant constraints on the operational reliability of laser weapons. Nonetheless, ongoing advancements in adaptive optics, atmospheric compensation algorithms, and real-time wavelength optimization are increasing resilience across diverse combat environments. Naval platforms benefit from relatively stable marine microclimates and abundant power and cooling capacity, whereas land-based systems must accommodate greater variability in dust, humidity, and terrain-driven line-of-sight restrictions. Future DEW deployments will rely heavily on environment-aware targeting solutions, integrated sensor fusion, and predictive engagement models to ensure consistent performance across changing battlefield conditions.

5. Tactical Integration Into Air Defence Systems

Laser-based DEWs are emerging as essential components of short-range and point-defence architectures, especially against low-cost, expendable aerial threats such as UAVs, loitering munitions, and RAM projectiles. Their near-zero cost-per-shot, instantaneous engagement, and large effective magazine size complement traditional missile interceptors and extend the capacity of layered defence systems.

5.1 Role in SHORAD

Within layered air defence architectures, short-range air defence (SHORAD) represents the primary operational domain in which laser-based Directed Energy Weapons can deliver immediate and cost-effective defensive effects:


- UAVs and Drones: High-energy lasers can disable Class I–III drones by targeting propulsion systems, guidance electronics, or structural components. Systems including the U.S. DE M-SHORAD and Israel's Iron Beam demonstrate cost-efficient neutralization of UAV swarms.
- Loitering Munitions: Directed energy offers precise defeat mechanisms with reduced collateral effects critical in urban or infrastructure-sensitive environments.
- RAM Threats: High-power DEWs show promise against mortar shells and slow-moving projectiles within 1–3 km, serving as a complementary layer to kinetic intercept systems.

5.2 Integration with C4ISR

Effective deployment of DEWs requires seamless integration into command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) frameworks:

- Radar Systems: AESA and 3D radars provide initial detection, tracking, and engagement cueing.
- EO/IR Sensors: Enable multi-spectral target confirmation, beam alignment, and damage assessment.
- AI-Based Fire Control: Enhances threat prioritization and closed-loop tracking, enabling concurrent coordination with surface-to-air missiles and close-in weapon

systems within layered defence networks. The layered defence network (Fig. 5) demonstrates the operational value of distributed intercept systems.

Fig. 5. Layered air defence architecture integrating Directed Energy Weapons (DEWs), Surface-to-Air Missiles (SAM), Close-In Weapon Systems (CIWS), and radar-based command and control.

Source: Author's own conceptual illustration.

Fig. 5 illustrates a modern multi-layered air defence system. A central radar unit provides situational awareness and real-time tracking to all defence nodes. The Directed Energy Weapon (DEW) neutralizes UAVs and loitering munitions with precise laser engagement. Surface-to-Air Missiles (SAM) are deployed to intercept cruise missiles at medium-to-long range, while Close-In Weapon Systems (CIWS) represent the last line of defence against close-proximity threats. The red dashed connections denote integrated targeting and sensor communication links, highlighting coordinated response capability and layered coverage for airspace security.

5.3 Reaction Time and Kill Chain Compression

Laser Directed Energy Weapons (DEWs) significantly reduce engagement timelines and close the kill chain faster than kinetic interceptors:

- No Reloading: Laser systems require no physical ammunition, resulting in zero reload cycles and providing uninterrupted engagement capability against massed or swarm attacks.
- Instant Engagement: Light-speed beam delivery produces effects within milliseconds, making DEWs highly effective in short-range, time-critical, and saturation scenarios.
- Compressed Kill Chain: Integration with radar and electro-optical (EO) sensors, combined with automated target tracking, streamlines the Detect–Engage–Assess loop and reduces human-induced response latency.

The comparative performance of Laser DEWs, Surface-to-Air Missiles (SAMs), and Close-In Weapon Systems (CIWS) is summarized in Table 4.

Table 4. Comparative Performance of Laser DEWs, SAMs, and CIWS.

Metric	Laser DEW	Surface-to-Air Missile (SAM)	Close-In Weapon System (CIWS)
Engagement Range	1–5 km (tactical systems)	5–100+ km (system-dependent)	0.5–2.5 km
Reaction Time	<1–2 seconds (light-speed + auto-tracking)	5–15 seconds (radar lock + missile launch)	2–5 seconds (cueing + barrel spin-up)
Cost Per Shot	<\$5–10 (electrical energy only)	\$30,000 to >\$1 million	~\$2,000–\$4,000 per burst
Magazine Depth	Virtually unlimited	Finite (launcher capacity)	Limited (ammo belt/drum)
Effect on Target	Thermal ablation, ignition, sensor damage	Blast-fragmentation, kinetic hit	Kinetic fragmentation
Collateral Damage	Minimal (localized energy)	High (blast radius)	Moderate (overshoot/stray rounds)
Weather Sensitivity	High (fog, dust, rain)	Low (all-weather capable)	Low
Maintenance	Moderate (optics and cooling)	High (fuel, storage, missiles)	High (barrel and electronics)

Source: Author's own synthesis based on published defence system studies and operational reports.

UAV Swarm Neutralization

In short-range conflicts, swarming UAVs are designed to overwhelm kinetic defenses through numerical saturation. Unlike SAM or CIWS platforms constrained by reload time and magazine limits, high-energy lasers with radar/EO tracking engage multiple UAVs at light-speed. By burning electronics and structural components, DEWs deliver precise, low-collateral kills. Demonstrated by systems such as DE M-SHORAD and Iron Beam, this capability underscores the operational value of DEWs for sustained counter-UAV and base-defense missions in layered air defense architectures.

5.4 Operational Deployments and Examples

Several integrated air defense systems incorporating DEWs are already in field trials or limited deployment:

- Israel – Iron Beam (Rafael): Complements Iron Dome with a ~100 kW-class laser for short-range intercepts.
- United States Army – DE M-SHORAD: A 50-kW laser mounted on Stryker vehicles to counter UAVs and RAM threats.
- India – ADITYA DEW Program: DRDO initiative for laser-based defense against drones and low-altitude missiles.
- U.S. Navy – LaWS (Laser Weapon System): Demonstrated shipborne integration with radar and EO targeting to defeat drones and small boats.

Laser DEWs provide a critical layer in modern air defense by enabling low-cost-per-shot, low-collateral, and rapid-response engagement. Their integration with radar-guided, EO-enhanced, and AI-augmented fire-control networks ensures synergy with SAM and CIWS, enabling scalable, multi-domain protection against evolving aerial threats.

6. Challenges And Technological Bottlenecks

Despite rapid progress, the operational deployment of laser-based Directed Energy Weapons (DEWs) remains constrained by several interdependent engineering and system-level challenges, primarily associated with power generation, thermal management, beam control, and safety. These bottlenecks collectively limit scalability, platform integration, and sustained operational availability.

6.1 Power Generation and Storage

High-energy laser systems typically require tens to hundreds of kilowatts of continuous electrical power, with additional overhead for cooling and beam-control subsystems. While fixed land-based installations may draw power directly from the electrical grid, naval and airborne platforms impose strict constraints on mass, volume, and power density. Current lithium-ion batteries and supercapacitors provide limited endurance for sustained engagements, particularly under pulsed or burst-power demands. Emerging alternatives including hydrogen fuel cells, solid-state batteries, and compact nuclear or hybrid power sources offer improved energy density but introduce significant challenges related to cost, safety certification, thermal integration, and platform compatibility, delaying near-term adoption.

6.2 Thermal Management

Owing to electrical-to-optical conversion efficiencies typically in the range of 20–35% at the system level, a substantial fraction of input energy is dissipated as waste heat during laser operation. Accumulated thermal loading can degrade optical components, induce beam distortion, and reduce system reliability. Active liquid-cooling architectures, phase-change materials, and heat exchangers are therefore essential but add considerable mass, volume, and mechanical complexity. Advanced solutions such as microchannel heat exchangers, nanofluid coolants, and two-phase cooling loops show promise; however, their long-term performance

and robustness under high-vibration, shock, and extreme-climate conditions remain key concerns for defense deployment.

6.3 Beam Control and Target Tracking

Maintaining precise beam focus and dwell time on high-speed, manoeuvring targets is challenged by atmospheric turbulence, platform vibration, pointing jitter, and countermeasures such as reflective or ablative coatings. Adaptive optics, inertial stabilization, and multi-spectral sensing architectures can partially mitigate these effects, yet scaling beam-control systems to higher power levels without introducing latency or instability remains a critical limitation. Effective engagement further depends on ultra-fast fire-control integration and predictive tracking algorithms capable of compensating for target motion and environmental uncertainty in real time.

6.4 Safety, Compliance, and Scalability

The deployment of high-energy laser systems introduces significant human-safety, platform-protection, and legal considerations, including eye-safety hazards, collateral damage risks, and compliance with international regulatory frameworks such as CCW Protocol IV. While demonstrator systems such as HELIOS and Iron Beam have validated operational feasibility, widespread adoption will require modular, ruggedized architectures that can be adapted across land, naval, and airborne platforms while maintaining safety assurance and interoperability. Extending DEW concepts toward space-based or multi-domain applications remains largely long-term and speculative, constrained by power availability, thermal rejection, and governance considerations.

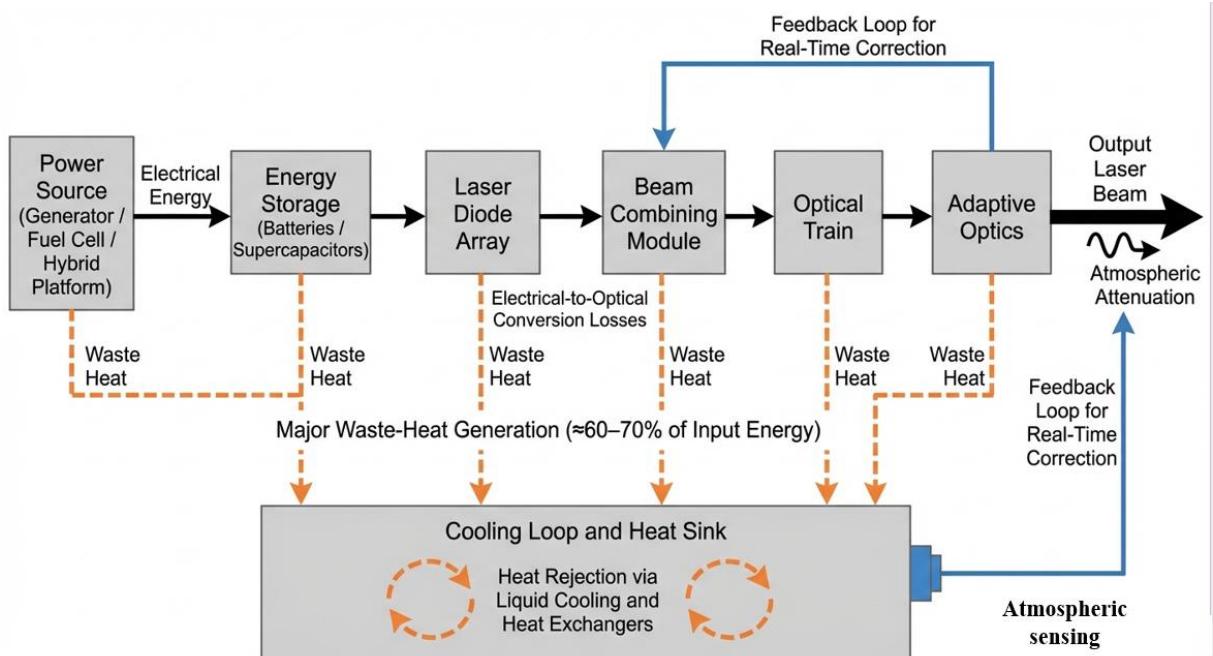


Fig. 6. Conceptual energy-flow architecture and thermal loss pathways in a high-energy laser-based directed energy weapon (DEW) system.

Source: Author's own conceptual schematic based on published high-energy laser system architectures.

As illustrated in Fig. 6, electrical energy in high-energy laser DEW systems is converted into optical output through multiple power-conditioning and beam-forming stages, with a substantial fraction of the input energy dissipated as waste heat. The schematic illustrates key subsystems, including power generation, energy storage, laser diode arrays, beam-combining optics, optical train, and adaptive optics for dynamic beam correction. Electrical power from generators, fuel cells, or hybrid platforms is conditioned and stored in high-discharge batteries or supercapacitors before driving the laser source. Due to electrical-to-optical conversion inefficiencies, approximately 60–70% of the input energy is dissipated as waste heat, necessitating closed-loop liquid cooling and heat-exchanger systems to maintain optical stability. Atmospheric attenuation and thermal blooming during beam propagation are mitigated through feedback from wavefront and atmospheric sensors to the adaptive optics module, enabling real-time correction and improved engagement precision. Recent demonstrations, such as DRDO's ADITYA high-energy laser prototype, validate the feasibility of this architecture while highlighting ongoing challenges related to thermal management, compact power integration, and optical stability under high-ambient-temperature conditions.

7. Strategic Future & Indian Roadmap

Laser-based Directed Energy Weapons (DEWs) are poised to reshape future warfare, extending their role from conventional air defense to space-based engagements and autonomous combat systems. For India, developing an indigenous DEW ecosystem is strategically essential for securing technological sovereignty, deterrence, and leadership in next-generation defense domains.

7.1 DRDO and ISRO Prospects

India has initiated multiple DEW programs spanning tactical and strategic applications. DRDO's ADITYA (25–50 kW class for UAV/artillery interception) and CHESS (100 kW-class for layered air defense) represent significant milestones in ground-based laser weapon development. Parallel advancements by ISRO in laser communication and optical tracking (e.g., GSAT payload programs) establish a foundational capability for future space-based DEWs and potential anti-satellite (ASAT) systems, supported by the Defence Space Agency's evolving role.

7.2 Role in Space Warfare

DEWs offer near-instantaneous engagement, a virtually unlimited magazine, and minimal logistical burden attributes ideally suited for countering satellites, manoeuvring debris, and hypersonic threats. However, challenges persist in power generation, beam quality maintenance, thermal dissipation, and adherence to the Outer Space Treaty. India's roadmap requires balancing technological ambition with regulatory alignment, responsible power projection, and coalition-driven norms.

7.3 Ethical, Legal, and Geopolitical Concerns

The proliferation of DEWs intersects with CCW Protocol IV, Geneva Convention humanitarian provisions, and Laws of Armed Conflict (LOAC). New doctrines must define escalation thresholds, proportionality rules, human oversight, and autonomous decision boundaries. Regional dynamics particularly Indo-Pacific deterrence may accelerate

development through diversified supply chains, Quad-based collaboration, and interoperable standards.

7.4 Interoperability with AI and Autonomous Systems

Future DEW systems will be deeply integrated with AI-driven warfare architectures. Machine learning enhances predictive beam control, threat classification, and prioritization through real-time sensor fusion. Autonomous UAV/USV swarms may form distributed defense networks, while quantum-enhanced computing could transform adaptive optics and targeting precision. As shown in Table 5, India's DEW programs remain at lower Technology Readiness Levels (TRLs) relative to global leaders.

Table 5. India vs Global DEW Programs Status, Readiness, Scope.

Country	Program/Project	Power Class	Readiness Level (TRL)	Platform Focus	Strategic Scope
USA	HELIOS	60–150 kW (to 300 kW)	TRL 8–9	Naval, land, air	Theater defense, cruise missile, satellite security
USA	DE M-SHORAD	50 kW	TRL 7–8	Wheeled vehicles	Counter-UAV & artillery
Israel	Iron Beam	~100 kW	TRL 8	Ground	Rocket/artillery/UAV interception
China	Silent Hunter	30–100 kW	TRL 7–8	Mobile ground	ASAT & air roles
Russia	Peresvet	Classified	TRL 7–8	Mobile ground	Strategic asset protection
India	ADITYA, CHESS, MK-II(A)	2–30 kW (exp. 50–100 kW)	TRL 5–6	Ground, naval, future ASAT	Short-range UAV/air defense

Source: Author's compilation and assessment based on open-source defence reports and published literature.

India stands at a critical inflection point in DEW development. With a strong national research base and alignment with global best practices, India can establish leadership in both terrestrial and orbital DEW capabilities. Achieving strategic autonomy by the mid-2030s will require synergizing power systems, advanced materials, AI-based targeting, manufacturing scale, and regulatory frameworks. Artificial intelligence is emerging as a primary enabler of autonomous DEW engagement. Machine learning supports real-time target classification, distinguishes drones from missiles, and applies predictive energy allocation for swarms based on threat velocity and proximity. AI also stabilizes beams, automates retargeting, and modulates

power levels to ensure resilience in contested electromagnetic environments. Projected subsystem readiness is outlined in Table 6.

Table 6. Projected Technology Readiness Levels (TRLs) for Key Laser-DEW Subsystems (2025–2035).

Subsystem/Feature	Current TRL (2025)	Projected TRL (2030)	Notes
High-Energy Fiber Lasers	6–7	9	Near maturity in HELIOS/Iron Beam
Compact Energy Storage	5	8	Li-Air and supercaps advancing
Adaptive Optics	6	8–9	Deployment-ready in labs
AI-Based Threat Prioritization	4–5	8	DARPA trials ongoing
Space-Based DEWs	3	6	Multiple conceptual demos

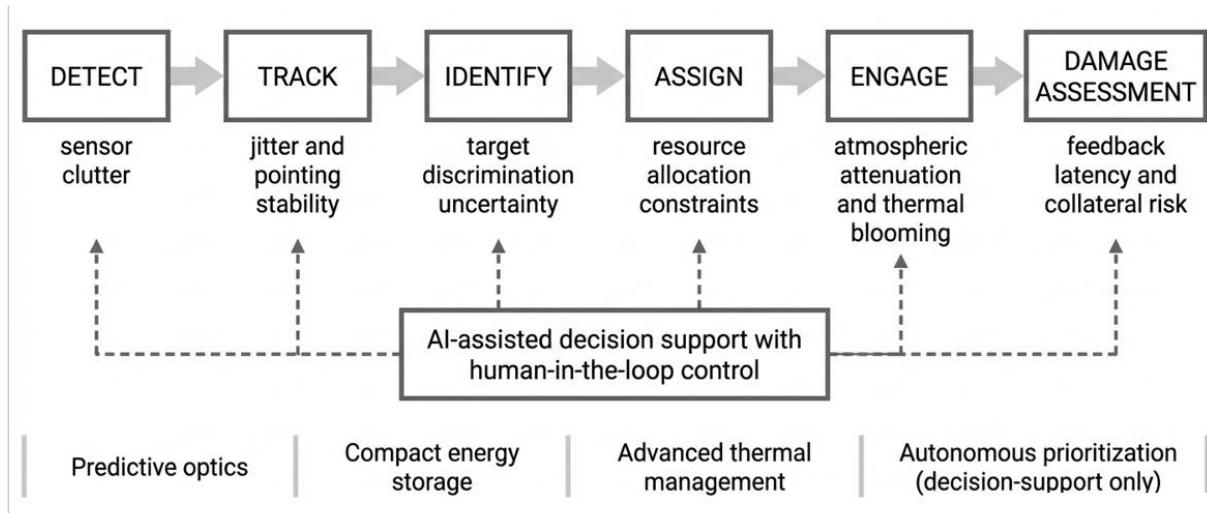
Sources: Author's projected assessment based on current literature trends and technology readiness analyses.

8. Discussion: Opportunities, Constraints, and Emerging Risks

The development of laser-based Directed Energy Weapons (DEWs) is the result of parallel advances in photonics, semiconductor electronics, power systems, and computational intelligence. Improvements in laser diode drivers and high-speed switching electronics (Meghelli et al., 1997; Schneibel et al., 1999; Knochenhauer et al., 2009; Moto et al., 2013; Reyaz et al., 2015) have enabled more compact and efficient laser generation, supporting the transition of DEWs from experimental demonstrators to deployable prototypes. However, scaling these components for sustained, high-power engagement introduces ongoing challenges related to thermal stability, conversion efficiency, and pulsed power reliability, particularly for mobile platforms. At the operational level, decision support and weapon–target assignment remain active areas of research. Existing optimisation models largely evolved from kinetic missile defence paradigms (Ahuja, Kumar and Jha, 2007; Lloyd and Witsenhausen, 1986; Kolitz, 1988; Roux and Van Vuuren, 2007; Bogdanowicz et al., 2012; Kline, Ahner and Lunday, 2019; Lu and Chen, 2021). While these frameworks are valuable, they do not fully reflect the unique characteristics of laser engagement such as continuous dwell requirements, sensitivity to atmospheric variation, non-linear time-to-kill behaviour, or swarm-based asynchronous threat patterns. Newer research incorporating artificial intelligence and knowledge-graph-based reasoning (Nickel et al., 2015; Wilcke et al., 2017) points toward more adaptive and predictive engagement models, though practical validation in multi-threat, electronic warfare, or GPS-denied environments remains limited. AI Reliability and Fail-Safe Governance The integration of AI-driven beam control and autonomous target evaluation introduces both opportunity and risk. Current research trends emphasize human-on-loop supervision; however, for strategic applications, a human-in-loop architecture remains critical

to ensure accountability, prevent misidentification, and maintain cybersecurity resilience. AI-enabled predictive models must be transparently trained, auditable, and robust against spoofing or deceptive sensor inputs. Establishing fail-safe override logic, traceable decision logging, and ethical engagement protocols is therefore as essential as improving accuracy or reaction time. From a strategic and procurement perspective, industry and market predictions (Precedence Research, 2024; National Defense Magazine, 2025) position DEWs as cost-effective solutions for defending against low-cost, high-volume threats. These expectations are promising; however, they may overestimate near-term readiness by underplaying the logistical realities of power generation, cooling, maintenance, crew training, and lifecycle cost. The U.S. GAO (2023) has noted that many reported performance metrics are highly scenario-dependent and may not reflect operational durability across diverse theatres. Additionally, while interest in space-based DEWs is increasing (Baccarelli et al., 2023), the supporting policy and regulatory frameworks remain emergent, particularly regarding escalation control, attribution, and rules of engagement for non-kinetic space conflict.

Space-Based DEW Feasibility While space-based laser systems offer theoretical advantages in persistence, global coverage, and boost-phase interception, their feasibility is constrained by unresolved engineering barriers. Power generation and rapid discharge, heat rejection in a vacuum, radiation hardening, and orbital servicing impose significant mass and cost penalties. These challenges underscore that space-based DEWs remain a long-term prospect requiring breakthroughs in compact energy storage, thermal management, reusable launch systems, and international governance. Overall, the literature reflects a technology in transition: operationally relevant and strategically attractive, yet still maturing in terms of resilience, maintainability, and system integration within broader C4ISR architectures. The strength of DEWs lies not in replacing kinetic systems outright, but in complementing them—particularly where cost-per-shot asymmetry, collateral sensitivity, and high-volume aerial threats challenge conventional interception.


Limitations, Policy Considerations, and Responsible Adoption

While DEWs offer compelling operational benefits, their deployment raises questions extending beyond engineering performance. There are currently no universally accepted international norms governing non-kinetic engagement, and risks related to sensor blinding, misidentification in autonomous targeting, or escalation through pre-emptive laser use remain insufficiently regulated. The regulatory framework for laser-based DEWs remains fragmented, particularly with respect to the blinding prohibition outlined under the 1995 UN CCW Protocol IV. Although high-energy DEWs are not explicitly classified under existing treaties, their potential to damage sensors, satellites, and crewed assets raises similar humanitarian and compliance concerns. As DEWs transition toward wider operational integration, coordinated legal standards, rules of engagement, real-time incident attribution, and transparency mechanisms will become essential to avoid escalation, misinterpretation, or unintended harm. Addressing these challenges requires collaboration across defence engineering, international policy, humanitarian law, and emerging autonomy governance to ensure capability development does not outpace responsible oversight. Key Directed Energy Weapon (DEW) Challenges, Current Mitigations, and Future Research Directions are shown in Table 7.

Table 7. Key Directed Energy Weapon (DEW) Challenges, Current Mitigations, and Future Research Directions.

Challenge	Current Mitigation / Technologies	Future Research Need
Atmospheric attenuation (fog, dust, turbulence)	Adaptive optics, beam shaping, wavelength selection	Real-time atmospheric sensing and AI-based predictive correction
High energy demand for sustained firing	Shipborne power systems, hybrid capacitors, vehicle-integrated power modules	Compact energy storage, rapid discharge architectures, high-density batteries
Thermal management during continuous engagement	Liquid cooling, phase-change plates, heat exchangers	Nano-fluidic cooling, closed-loop vapor chambers, lightweight radiative systems
Tracking fast-moving or swarming aerial threats	AI-assisted tracking, multi-sensor fusion (EO/IR, radar)	Autonomous target prioritization and resilience against adversarial deception
Countermeasures and reflective coatings on targets	Increased power density, multi-spectral beam tuning	Material-specific laser coupling optimisation and adaptive frequency switching
AI reliability and engagement safety	Human-in-loop supervision and operator override	Formal model verification, auditable algorithms, and failsafe decision logic
Feasibility of space-based DEW platforms	Conceptual models and limited orbital testing	Power generation and heat rejection solutions, orbital policy and governance frameworks

Sources: Author's own conceptual synthesis based on literature review.

Fig. 7. Integrated conceptual model illustrating the Directed Energy Weapon (DEW) kill chain, associated technical bottlenecks, AI-governed control architecture, strategic constraints, and future research pathways.

Source: Author's own conceptual schematic based on published high-energy laser system architectures.

The model highlights the interdependence between operational phases, atmospheric and computational limitations, and the emerging role of ethical and fail-safe governance in next-generation laser weapon systems.

Fig. 7 presents an integrated conceptual framework that synthesizes the end-to-end Directed Energy Weapon (DEW) kill chain with the principal technical, computational, and governance constraints influencing system performance. The model links sequential operational phases detection, tracking, identification, engagement, and damage assessment with key engineering bottlenecks such as atmospheric attenuation, beam-control latency, thermal loading, and power-management limitations. An AI-governed control layer is shown as a decision-support mechanism that enhances sensor fusion, target prioritization, and adaptive beam control while retaining human-in-the-loop oversight to ensure safety and accountability. The framework further incorporates strategic and ethical constraints, including reliability, escalation control, and compliance with international norms, highlighting the need for fail-safe architectures. Collectively, the figure emphasizes that the effectiveness of future laser-based DEW systems will depend not on isolated subsystem advances, but on the coordinated integration of physical, computational, and governance layers across the entire operational lifecycle.

9. Conclusion

Laser-based Directed Energy Weapons (DEWs) have progressed from long-standing conceptual studies to early operational and pre-operational systems, with platforms such as HELIOS and Iron Beam demonstrating credible defensive utility under constrained engagement scenarios. Nevertheless, persistent challenges related to power generation, thermal management, atmospheric propagation, beam control, and platform integration continue to limit widespread deployment and mission flexibility across domains. This review has examined the

classification of laser technologies, platform-specific integration strategies, laser–material interaction mechanisms, atmospheric effects, and system-level bottlenecks, highlighting the central role of materials science, thermal engineering, and optical control in determining DEW performance and reliability. The analysis underscores that operational effectiveness is governed not solely by laser power, but by the coordinated optimization of energy efficiency, heat rejection, beam stability, and engagement geometry. Future DEW development is likely to be shaped by advances in AI-assisted decision support, adaptive optics, and compact high-energy-density power systems, which collectively may expand feasible deployment across land, naval, and selected airborne platforms. More speculative applications, including space-based concepts, remain long-term and contingent on substantial breakthroughs in power availability, thermal rejection, and governance frameworks. Within the Indian context, initiatives such as ADITYA and CHESS represent important steps toward indigenous high-energy laser capability. However, achieving operational scalability will require sustained investment in power and thermal subsystems, cross-platform integration, and coordinated collaboration among DRDO, ISRO, academic institutions, and private industry to accelerate technology maturation. Overall, laser-based DEWs offer the potential for rapid response, reduced logistical burden, and precision engagement with limited collateral effects when employed as complementary elements within layered defence architectures. Their future impact will depend on realistic system integration, responsible governance, and continued advances in enabling technologies rather than raw laser output alone.

References

Adams, J. and Schallhorn, C. (2016) *Directed Energy Weapons: Applications and Technologies*. Hauppauge, NY: Nova Science Publishers.

Ahmad, A. et al. (2024) ‘Fuzzy knowledge-based intelligent decision support’, *Journal of Ambient Intelligence and Humanized Computing*, 15, pp. 2317–2334. Available at: <https://doi.org/10.1007/s12652-024-04757-3>.

Ahuja, R.K., Kumar, A. and Jha, K.C. (2007) ‘Exact and heuristic algorithms for weapon-target assignment’, *Operations Research*, 55(6), pp. 1136–1146. Available at: <https://doi.org/10.1287/opre.1070.0440>.

Amini, A., Zhao, C. and Karimi, H. (2024) ‘Energy storage and rapid-discharge power systems for mobile high-energy laser weapons’, *Journal of Energy Storage*, 72. Available at: <https://doi.org/10.1016/j.est.2023.109022>.

Andrews, L.C. and Phillips, R.L. (2005) *Laser Beam Propagation Through Random Media* (2nd ed.). Bellingham, WA: SPIE Press. Available at: <https://doi.org/10.1117/3.626196>.

Baccarelli, E. et al. (2023) ‘Space-based directed energy concepts for ASAT defense’, *Acta Astronautica*, 208, pp. 123–137. Available at: <https://doi.org/10.1016/j.actaastro.2023.05.011>.

Benford, J., Benford, G. and Satori, D. (2021) ‘Laser weapon power requirements for engaging missiles and drones’, *IEEE Transactions on Plasma Science*, 49(9), pp. 2712–2722. Available at: <https://doi.org/10.1109/TPS.2021.3099881>.

Bogdanowicz, Z.R. et al. (2012) 'Optimization of weapon-target pairings', *IEEE Transactions on Cybernetics*, 43(6), pp. 1835–1844. <https://doi.org/10.1109/TSMCB.2012.2231673>

Bowers, M., Davis, J. and Patel, S. (2023) 'Laser thermal blooming prediction and mitigation strategies', *Optical Engineering*, 62(3). Available at: <https://doi.org/10.1117/1.OE.62.3.036102>.

Burns, H.N., Christodoulou, C.G. and Boreman, G.D. (1991) 'System design of a pulsed laser rangefinder', *Optical Engineering*, 30(3), pp. 323–329. Available at: <https://doi.org/10.1117/12.55801>.

Chen, L. et al. (2020) 'Command and control with augmented reality', *Journal of Physics: Conference Series*, pp. 1–12. Available at: <https://doi.org/10.1088/1742-6596/1627/1/012002>.

Coffey, V.C. (2014) 'High-energy lasers: new advances in defense applications', *Optics and Photonics News*, October. Available at: <https://doi.org/10.1364/OPN.25.10.000028>

Farlik, J. and Tesar, F. (2018) 'Aspects of surface-to-air missile system modelling', *Modelling and Simulation for Autonomous Systems*, pp. 323–333. Available at: https://doi.org/10.1007/978-3-319-76072-8_23.

Farlik, J. et al. (2015) 'Air defence missile system effective coverage', *Proceedings of IEEE International Conference on Military Technology*, pp. 669–673.

Fedorov, A., Zhang, X. and Wang, Y. (2024) 'Thermal management solutions for mobile directed-energy platforms', *Applied Thermal Engineering*, 235, pp. 121–145. Available at: <https://doi.org/10.1016/j.applthermaleng.2023.120112>.

Frantis, P. and Petru, A. (2015) 'Improving pilot's sensory illusion resistance', *Proceedings of IEEE International Conference on Military Technology*, pp. 435–438.

Gao, S. (2003) 'Ant colony algorithm for weapon-target assignment problem', *Computer Engineering and Applications*, pp. 78–79.

Georgieva, P. (2016) 'Fuzzy rule-based systems for decision-making', *Engineering Sciences*, LIII, pp. 5–16.

Hanák, J. et al. (2024) 'Cross-entropy method for laser defense applications', *Journal of Guidance, Control, and Dynamics*, pp. 1–12. Available at: <https://doi.org/10.2514/1.1011357>.

Ho, E. et al. (2022) 'Game theory in defence applications', *Sensors*, 22(3), 1032. Available at: <https://doi.org/10.3390/s22031032>.

Huang, S.C., Li, W.M. and Li, W. (2005) 'Multisensor management with ant colony algorithm', *Journal of Air Force Engineering University*, 6(2), pp. 28–31.

Huang, D., Wang, L. and Chen, Q. (2023) 'High-power solid-state laser beam shaping', *Laser Physics*, 33(5). Available at: <https://doi.org/10.1088/1555-6611/acd02a>.

Juan, L., Jie, C. and Bin, X. (2015) 'Solving multi-objective dynamic weapon-target assignment problems', *Proceedings of Chinese Control Conference*. Available at: <https://doi.org/10.1109/ChiCC.2015.7260033>.

Karkadakattil, A. (2025) 'AI-Based Predictive Laser Beam Control for UAV Interception', *Acceleron Aerospace Journal*, 5(2), pp. 1331–1349. Available at: <https://doi.org/10.61359/11.2106-2545>.

Kim, M. (2007) 'Self-aligned InP/InGaAs heterojunction bipolar transistors', *Journal of Korean Physical Society*, 51(2), pp. 612–615. Available at: <https://doi.org/10.3938/jkps.51.612>.

Kline, A.G., Ahner, D.K. and Lunday, B.J. (2019) 'Real-time heuristic algorithms for weapon-target assignment', *Journal of Heuristics*, 25(3), pp. 377–397. Available at: <https://doi.org/10.1007/s10732-018-9401-1>.

Knochenhauer, C. et al. (2009) 'A compact, low-power 40 Gbit/s differential laser driver', *European Microwave Conference Proceedings*, pp. 324–326. Available at: <https://doi.org/10.23919/EUMC.2009.5296521>.

Kolitz, S.E. (1988) 'Maximum marginal return assignment algorithm', *Proceedings of IEEE Conference on Decision and Control*, pp. 2431–2436. Available at: <https://doi.org/10.1109/CDC.1988.194778>.

Kopeika, N.S. (1990) *A System Engineering Approach to Imaging*. Bellingham, WA: SPIE Optical Engineering Press.

Lee, U. (2025) 'Reliability-based design optimization framework for high-energy laser weapons using artificial neural network ensemble', *Expert Systems with Applications*, 128202. Available at: <https://doi.org/10.1016/j.eswa.2025.128202>.

Lin, J., Chen, H. and Wu, T. (2023) 'Machine learning–enabled adaptive optics optimization for laser propagation through turbulent atmosphere', *Applied Optics*, 62(15), pp. 3899–3911. Available at: <https://doi.org/10.1364/AO.482733>.

Liu, H., Chen, S. and Xu, W. (2022) 'Analysis of atmospheric propagation losses for high-energy lasers', *Journal of Applied Physics*, 131(7). Available at: <https://doi.org/10.1063/5.0078563>.

Lloyd, S.P. and Witsenhausen, H.S. (1986) 'Weapons allocation is NP-complete', *Proceedings of Summer Computer Simulation Conference*, pp. 1054–1058.

Lötter, D.P., Nieuwoudt, I. and Van Vuuren, J.H. (2013) 'Multiobjective approach towards weapon assignment', *ORiON*, 29(1), pp. 31–54. Available at: <https://doi.org/10.5784/29-1-138>.

Lu, Y. and Chen, D.Z. (2021) 'New exact algorithm for weapon-target assignment', *Omega*, 98, 102138. Available at: <https://doi.org/10.1016/j.omega.2019.102138>.

Malcolm, W. P. (2004). *On the character and complexity of certain defensive resource allocation problems*. Defence Science & Technology Organization Publication, Department of Defence, Canberra, ACT, Australia.

Meghelli, M. et al. (1997) '30 Gbit/s InP DHBT 2:1 selector-driver IC', *Electronics Letters*, 33(12), pp. 1057–1058. Available at: <https://doi.org/10.1049/el:19970726>.

Metler, W.A., Preston, F.L. and Hofmann, J. (1990) *Suite of weapon assignment algorithms for SDI mid-course battle manager*.

Moto, A. et al. (2013) 'A low power quad laser diode driver', *Proceedings of IEEE CSICS*, pp. 1–4. Available at: <https://doi.org/10.1109/CSICS.2013.6659201>

Murphrey, R.A. (2000) 'Approximate algorithm for stochastic weapon-target assignment', *Approximation and Complexity in Numerical Optimization*, pp. 406–421. Available at: https://doi.org/10.1007/978-1-4757-3145-3_24.

Nguyen, T., Park, J. and Kim, S. (2023) 'Adaptive optics and turbulence compensation for high-altitude laser engagement', *Optics Express*, 31(4), pp. 5874–5891. Available at: <https://doi.org/10.1364/OE.482112>.

Nickel, M. et al. (2015) 'Relational machine learning for knowledge graphs', *Proceedings of the IEEE*, 104(1), pp. 11–33. Available at: <https://doi.org/10.1109/JPROC.2015.2483592>

Paradis, S. et al. (2016) *Threat evaluation and weapons allocation in network-centric warfare*, Vol. 2.

Patel, R. and Srinivasan, M. (2024) 'AI-driven beam control for laser-based defense systems', *Defense Technology*, 20(1), pp. 51–64. Available at: <https://doi.org/10.1016/j.dt.2023.03.012>.

Phipps, C.R. (2007) *Laser Ablation and Its Applications*. Berlin: Springer. Available at: <https://doi.org/10.1007/978-0-387-30453-3>.

Reyaz, S.B. et al. (2015) 'SiGe BiCMOS high-gain wideband amplifier', *IET Microwaves, Antennas & Propagation*, 9(6), pp. 569–575. Available at: <https://doi.org/10.1049/iet-map.2014.0511>.

Roux, J.N. and Van Vuuren, J.H. (2007) 'Threat evaluation and weapon assignment decision support', *ORiON*, 23(2), pp. 151–187. Available at: <https://doi.org/10.5784/23-2-54>

Schneibel, H. et al. (1999) 'High current InP transistor driver circuit', *Proceedings of Indium Phosphide and Related Materials Conference*, pp. 455–457. Available at: <https://doi.org/10.1109/ICIPRM.1999.773731>.

Sikanen, T. (2008) 'Solving weapon target assignment problem with dynamic programming', *Independent Research Projects in Applied Mathematics*, 32.

Weichel, H. (1990) *Laser Beam Propagation in the Atmosphere*. Bellingham, WA: SPIE Optical Engineering Press.

Tanaka, K., Saito, M. and Kobayashi, T. (2024) 'Atmospheric attenuation modelling for long-range high-energy laser engagement', *Optics & Laser Technology*, 176. Available at: <https://doi.org/10.1016/j.optlastec.2023.110128>

Voynov, P.S. et al. (2021) 'Possibilities of additive technologies application in designing and manufacturing of weapons of military equipment', *Bulletin of PNRPU Mechanical Engineering and Material Science*, 23(2), pp. 70–78.

Wang, Z., Chen, H. and Luo, P. (2022) 'Wavefront control and real-time correction for airborne laser systems', *Optics and Lasers in Engineering*, 158. Available at: <https://doi.org/10.1016/j.optlaseng.2022.107178>

Wilcke, X. et al. (2017) 'Knowledge graph as default data model for machine learning', *Data Science*, 1(1), pp. 39–57. Available at: <https://doi.org/10.3233/DS-170007>.

Xin, B. et al. (2010) 'Efficient decision making for dynamic weapon-target assignment', *IEEE Transactions on Systems, Man, and Cybernetics*, 40(1), pp. 66–75. Available at:

Zeng, Y., Zhao, F. and Liu, Q. (2024) 'High-power fiber laser systems for defense applications', *Opto-Electronic Advances*, 7(6). Available at: <https://doi.org/10.29026/oea.2024.230041>.

Zhang, B. et al. (2025) 'Process optimization and characterization of Inconel 718 coatings by laser-based directed energy deposition', *Progress in Additive Manufacturing*. Available at: <https://doi.org/10.1007/s40964-025-01196-0>.

Other sources

NATO Science and Technology Organization (2019) *Directed Energy Weapons: Technology and Operational Impact (Technical Report AVT-273)*. Brussels: NATO STO.

Army-Technology (2025) 'Update: Iron Beam laser air defence system enters new testing phase'. Available at: <https://www.army-technology.com> (Accessed: 18 August 2025).

High Energy Laser Joint Technology Office High Energy Laser Joint Technology Office (HEL-JTO) (2020) *Annual Technical Review Summary Report*. Washington, DC: US Department of Defense.

Lockheed Martin Corporation (2022) *HELIOS system overview*. Available at: <https://www.lockheedmartin.com> (Accessed: 18 August 2025).

Lockheed Martin (2022) *LLD/HE-Laser High Power Laser Program Overview*. Available at: <https://www.lockheedmartin.com> (Accessed: 18 August 2025).

Indian Defence Research Wing (2024) 'DRDO ramps up directed-energy weapon development'. Available at: <https://www.idrw.org>

National Defense Magazine (2025) 'Directed energy in air base defense can save the arsenal'. Available at: <https://www.nationaldefensemagazine.org> (Accessed: 18 August 2025).

National Academies Press (2008) *Review of Directed Energy Technology for Countering Rockets, Artillery, and Mortars (RAM)*.

NATO Science and Technology Organization (2020) *Advanced Directed Energy Weapon Systems — NATO STO Research Report*.

Precedence Research (2024) *Directed Energy Weapons Market – Global Forecast Report 2024–2032*.

Rafael Advanced Defense Systems Ltd. (2023) Iron Beam fact sheet. Available at: <https://www.rafael.co.il>

United States Navy – Office of Naval Research (2023) *Pulsed Laser and Atmospheric Propagation Research Summary*.

United States Government Accountability Office (GAO) (2023) *Science & Tech Spotlight: Directed Energy Weapons*.

US Navy, Office of Naval Research (2017) *Laser Weapon System (LaWS) Demonstration Summary*.